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Abstract. Intelligence analysis involves routinely monitoring and cor-
relating large amount of data streaming from multiple sources. In order
to detect important patterns, the analyst normally needs to look at data
gathered over a certain time window. Given the size of data and rate
at which it arrives, it is usually impossible to manually process every
record or case. Instead, automated filtering (classification) mechanisms
are employed to identify information relevant to the analyst’s task. In
this paper, we present a novel system framework called FREESIA (Filter
REfinement Engine for Streaming InformAtion) to effectively generate,
utilize and update filtering queries on streaming data.

1 Introduction

Intelligence analysis involves routinely monitoring and correlating large amount
of data streaming from multiple sources. In order to detect important patterns,
the analyst normally needs to look at data gathered over a certain time window.
However not all data is relevant for the analysts task; the relevant set of data
needs to be selected from the streaming data. The task of monitoring involves a
combination of automated filtering system to identify candidate cases and human
analysis of cases and their related data. The filtering system is typically part
of a data aggregation server to which transaction data are fed from numerous
agencies in near real time. An analyst stores his task or goal specific filters that
are matched to incoming data as it flows. Multiple filters may be needed to
extract information from different sources.

Formulating the right filtering queries is an iterative and evolutionary process.
Initially the analyst may draw from his domain knowledge to express a filter.
But this filter needs to be refined based on how well it performs. Besides, it
needs to be refined to capture the changes over time in the emphasis given to
various attributes. In this paper we consider how to enable the filtering system to
perform automatic query refinement based on minimal and continuous feedback
gathered from the user. Below we give examples drawn from two intelligence
related tasks that illustrate how such a system can be employed:
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Example 1 (Intelligence Report Monitoring). Massive amount of incident reports
are continuously generated by law enforcement agencies which are monitored by
analysts at different levels to detect trends and correlations. For instance, an ana-
lyst at federal level may want to continuously filter and analyze all relevant incident
reports from local agencies that relates to multi-housing (e.g. rental apartment or
condominium) and lodging (e.g. hotels ormotels) facilities that have nationalmon-
uments in their proximity.The analystmayalso express detailed preferences on the
attributes related to the suspects described in the incident report. To achieve this,
the analyst draws from his domain knowledge to specify an initial (imprecise) filter
to the data reporting server. The server matches the filter with incoming reports.
In cases where matching reports can be large, it will be useful if the system can also
rank the reports based on how strongly they match the given filter. To refine both
the classification and ranking capabilities of the filter over time, the system offers
the analyst a feature to provide feedback on the relevance of the reports. Based on
the feedback the system automatically refines the filter.

Example 2 (Intelligence Information Dissemination). Large amount of intel-
ligence information is gathered everyday from various sensors. For instance,
US custom services use various sensing technologies (e.g., cameras, finger-print
reader) to gather passenger information from airports and seaports. Different fea-
ture extraction tools are used to extract features from these data. Data matching
given multi-feature criteria, watch-lists or archived data must be disseminated
to analysts in different agencies for further processing. Analysts register filter-
ing queries to the central system that gathers the data which then disseminates
relevant information in a prioritized manner to analysts. Similar to the previous
example, feedback from the analyst can be used to automatically adjust filtering
queries stored in the system.

Technically, filtering queries can be considered as classifiers since their purpose
is to classify each incoming data item as relevant (i.e. belong to the target class)
or non-relevant. However, the following three important requirements distinguish
our filtering queries from traditional classifiers:

1. Ranking and Scoring. For the purpose of filtering data instances belonging
to a target class from massive volumes of streaming data, classifiers that merely
make binary decisions are inadequate. The classifiers need to also score and rank
records based on how strongly they match the filters. Ranking is useful for two
reasons: (1) it enables the analyst to prioritize the processing of records, and
(2) in cases where rigid binary partitioning of relevant and non-relevant data is
undesirable, it facilitates the prioritization of records that are highly likely to
be in the target class while at the same time not eliminating records. The latter
issue is particularly important due to the fact that in most situations the filters
are not crisp rules but rather fuzzy and approximate. This makes classifiers that
score and rank data instances more appropriate than classifiers that only make
binary decisions on class membership.

2. Incorporating Analyst’s Domain knowledge. In a great majority of
intelligence applications, analyst’s domain knowledge (e.g. about features of
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suspects, etc.) forms a critical component. Hence, it is imperative that the sys-
tem provides a mechanism to readily incorporate domain knowledge-induced
filtering rules. However, while filtering rules representing domain knowledge are
normally vague and imprecise, current database systems on which much of data
filtering is carried out require crisp expressions. In order to express filtering rules
on such systems, analysts are forced to convert their rules to very complex crisp
expressions. To avoid this problem, the filtering system needs to allow direct
execution of inexact filtering queries.

3. Interactive Refinement. As illustrated in the above examples, allowing the
analyst to refine filters through relevance feedback (a.k.a. supervised learning) is
an important requirement. This becomes necessary when the rules expressed by
the analyst fail to capture the desired domain knowledge, or rules change over
time. An important issue to notice here is that unlike traditional approaches
where a classifier is learned and then applied in distinct phases, here the clas-
sifier needs to be incrementally refined using a feedback loop. Also notice that
human domain knowledge is incorporated in two ways: first, through submission
of domain knowledge in the form of initial filtering queries, and second, through
feedback on the classified records.

In this paper, we propose a framework called FREESIA (Filter REfinement En-
gine for Streaming InformAtion) that meets the above requirements. FREESIA
achieves ranking of streaming data by representing filtering queries (classifiers)
as multi-parametric similarity queries which allow the analyst to express his
imprecise filtering rules. Then, in the course of data analysis, the analyst can
refine and update these filters through example-based training so as to achieve
required accuracy and meet evolving demands. To efficiently support such dy-
namic adaptation of filters, FREESIA provides a set of algorithms for refining
filters based on continuous relevance feedback.

2 Definitions and Preliminaries

2.1 Data Model

Filters in FREESIA assume a structured multi-dimensional data. However, origi-
nally the data can be either a set of relational tables or in any unstructured/semi-
structured format. If the data is unstructured, data extraction tools1 can be first
applied to extract relevant values (e.g. names, places, time, etc.). The extracted
data is then represented in the form of attribute-value pairs and fed into filtering
modules.

2.2 Filtering Query Model

In this section we define a flexible query model that is powerful enough to capture
human supplied filters and domain knowledge in addition to enabling incremental
refinement. A filtering query or rule, henceforth simply referred to as filter or
1 For example, Attensity’s Extraction Engines: www.attensity.com
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classifier, consists of four components: a set of similarity predicates structured
in DNF form (Disjunctive Normal Form), a set of weights assigned to each
similarity predicate, a ranking function and a cut-off value.

Definition 1. A filter (classifier) is represented as a quadruple 〈ρ, ω, φ, α〉 where
ρ is a conditional expression, ω is a set of weights, φ is a ranking function and
α is a cut-off value. Below we give a brief description of these four elements.

Conditional Expression: A conditional expression, ρ, is a DNF (Disjunctive
Normal Form) expression over similarity predicates. Formally, an expression Q =
C1 ∨ C2 ∨ . . . ∨ Cn is a DNF expression where Ci = Ci1 ∧ Ci2 . . . , Cin is a
conjunction, and each Cij is a similarity predicate. A similarity predicate is
defined over the domain of a given data type (attribute type). A similarity
predicate takes three inputs: (1) an attribute value from a data record, t, (2) a
target value that can be a set of points or ranges, and (3) a similarity function,
f , that computes the similarity between a data value and the target value. A
similarity function is a mapping from two data attribute values, v1 and v2, to
the range [0,1], f : v1 × v2 → [0, 1]. The values v1 and v2 can be either point
values or range values. Similarity functions can be defined for data types or for
specific attributes as part of the filtering system.

DNF Ranking Functions, Weights and Cut-off: A DNF ranking function,φ,
is a domain-specific function used to compute the score of an incoming record by
aggregating scores from individual similarity predicates according to the DNF
structure of ρ and its corresponding set (template) of weights that indicate the
importance of each similarity predicate. The template of weights, ω, corresponds
to the structure of the search condition and associates a weight to each predicate
in a conjunction and also to each conjunction in the overall disjunction.

A DNF ranking function first uses predicate weights to assign aggregate scores
for each conjunction, and it then uses conjunction weights to assign an overall
score for the filter. A conjunction weight is in the range of [0, 1]. All predicate
weights in a conjunction add up to 1 while all conjunction weights in a disjunction
may not add up to 1. We aggregate the scores from predicates in a conjunction
with a weighted L1 metric (weighted summation). Using weighted L1 metric
as a conjunction aggregation function has been widely used in text IR query
models where a query is typically expressed as a single conjunction [12, 10]. To
compute an overall score of a query (disjunction), we use the MAX function over
the weighted conjunction scores. MAX is one of the most popular disjunction
aggregation functions [4].

2.3 Filter Refinement Model

The similarity conditions constituting a filter are refined using relevance feedback
that is used as real-time training example to adapt the predicates, condition
structure and corresponding weights to the information needs of the analyst.
More formally, given a filter, Q, a set R of the top k records returned by Q, and
relevance feedback F on these records (i.e., a triple 〈Q, R, F 〉), the refinement



Interactive Refinement of Filtering Queries on Streaming Intelligence Data 39

problem is to transform Q into Q′ in such a way that, when Q′ is used to
filter future streaming information or is re-executed on archival information, it
will return more relevant records. Section 3.2 will discuss in detail the types of
feedback that are gathered by the system and how they are represented.

3 Our Approach

In this section, we present our proposed approach for applying and refining
filters on streaming data. We first present an overall architecture of our system
FREESIA followed by a description of how the analyst interacts with FREESIA
(i.e. the feedback loop). We then propose algorithms that implement the classifier
refinement and scoring/ranking model refinement components of FREESIA.

3.1 The FREESIA System Architecture

FREESIA’s schematic design is depicted in Figure 1. The following four main
components constitute the system.

Filter Processing Component. When a new data group is received by the
system, the filters that are represented as similarity queries are executed by the
Filter Processing Component in order to score and filter relevant target records.
This component can be implemented in any commercial database system using
common similarity query processing techniques (e.g. [5, 1]). To readily apply the
similarity queries in this context, we use an SQL equivalent of the weighted DNF
query defined in 2.2.

If the similarity query has been modified (refined) since its last execution, the
system will also evaluate it on the archived data store which is used to store the
unseen (but matching) records as well as filtered out records. Re-evaluating the
query on the archive allows the identification of previously excluded records that
match the current filter. The scored list of records that results from the filter
processing component is passed to the ranking component.

Example 3. Consider the incident report analysis application from example 1.
For simplicity suppose that a data instance consists of only the location coordi-
nates, incident type, location type and number of suspects. Then one possible
query that filters potential analyst is given below.

SELECT Location, IncidentType, LocType, NumSuspects, RankFunc(w1,s1, w2, s2, w12) AS S,
FROM IncidentReports
WHERE LocNear(location, National_Monument, s1) AND LocTypeLike(LocType, {multi-housing,

lodging}, s2)
ORDER BY S desc

The label “National Monument” stands for a set of national monuments stored
separately. LocNear takes a given location and computes its distance from the
nearest national monument. LocTypeLike implements heuristic techniques to
match similarity of a location type to a classification hierarchy of places.
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Fig. 1. FREESIA system overview

Ranking Component. This component applies scoring rules to produce a rank-
ing of data instances. We employ two types of scoring methods. The first is the
similarity scoring rule (i.e. the ranking function defined in Section 2.2) that is
used by the Filter Processing Component. This represents the long-term filter of
the analyst. In addition to this scoring rule, FREESIA also incorporates other
scoring models that represent short-term (or special-case) rules that may not
participate in the filtering process (i.e. are not evaluated as similarity queries)
but are used for ranking. This, for instance, allows the analyst to temporarily
force the system to rank reports that fulfill a given complex criteria at the top.
Also, such rule can be specified by giving a record as a sample and asking “give
me records like this”. Many data mining methods can be used (e.g. [11]) to model
such samples to produce scores for incoming records (more details on this will
be given in Section 3.3). Given the scores from the similarity match and the
scoring rules, the Ranking Component applies a combination method to produce
the final ranking. As we mentioned in Section 2.3, the resulting ranked list of
records is partitioned into pages for presentation to the analyst.

Filter Refinement Component. As discussed before, it is often necessary
to interactively refine the analyst’s initial filtering queries. This is achieved in
FREESIA by collecting relevance feedback on the outputs of a filter. Upon seeing
the ranked list of records, the analyst can submit feedback on the relevance (or
otherwise) of the records - i.e. whether the records belong to the target class
or not. Based on this feedback, the Filter Refinement Component refines the
similarity queries. Section 3.3 will give details on the refinement process.

Scoring Model Refinement Component. In addition to its use for filter
refinement, the feedback from the analyst is also utilized to refine the additional
scoring rules. Section 3.3 will give details of this refinement process.

3.2 Gathering and Representing Feedback

Various types of feedback are gathered in FREESIA. One type of feedback
is what we call record-level feedback where the analyst provides feedback on
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particular records. However, in cases where the analyst receives large amount
of matching reports, FREESIA also provides feature to provide group feedback.
For this we exploit the fact that the system presents the results in pages (groups)
of a certain size which enables page-level feedback. Often, when an analyst looks
at a page, he can tell whether most of the records in the page are relevant in his
initial scanning of the results. If some level of error in a page is tolerable, the
analyst may want to accept all the records in a page for further processing. On
the contrary, in cases where the analyst determines that a page contains only
some relevant records, she may want to give record-level feedback.

For feedback gathering purposes, we distinguish three types of pages:

• Highly relevant pages: almost all the records in these pages are relevant. In
other words, the analyst will use all the record in these pages for further
actions despite the fact that there could be a few records in these page which
are not relevant.

• Relevant pages: only some of the records in these pages are relevant. For these
pages, the analyst provides feedback on each record.

• Unseen pages: these are the pages returned by the filter but are not viewed by
the analyst. We assume that these are deemed to be non-relevant.

Despite the availability of page-level feedback, providing record-level feed-
back may still be a time consuming operation in some cases. To deal with this,
FREESIA provides a parameter to specify the number of pages the analyst
wants to give record-level feedback on. The remaining pages are considered un-
seen pages.

3.3 Filter Refinement

Feedback Preprocessing. The refinement strategies used by the Query Re-
finement and the Scoring Model Refinement components require two sets of data:
contents of records on which the analyst gave relevance feedback (for e.g. to mod-
ify target values in predicates), and the feedback itself. We initially capture these
two types of information in the following two tables:

(1) A Result Table contains the ranked list of records returned by the filter as
well as the score assigned to each by the system.

(2) A Feedback Table contains the relevance feedback given by the analyst on
records that are a subset of those in the Result Table. Particularly, this
table contains record-level feedback given on Relevant Pages. Table 1 shows
a sample feedback table from the intelligence report monitoring example.

Since data attributes can have complex and non-ordinal attributes, perform-
ing query refinement directly on the result and feedback tables is difficult as this
will require specialized refinement method for each attribute type. To circum-
vent this problem, we transform the diverse data types and similarity predicates
defined on them into a homogeneous similarity space on which a single refine-
ment method can operate. We refer to the resulting table as Scores Table. It
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Table 1. Example feedback table (I=Irrel,R=Rel)

ID Location Incident Type LocType #Suspect FB

4 Irvine photographing retail center 2 I
1 Irvine Bomb threat hotel 0 R
7 LA Request for apartment 1 R

building blueprints
10 LA Unauthorized access hotel 2 R
60 LA Arson Inn 5 I
2 San Diego suspicious package office 1 I

delivery
3 San Diego Larceny Fed. Building 5 I

contains the following five columns that store statistical information useful for
the refinement process:

(1) Entry Identifier:– This identifier is a triple 〈AttributeID, V alueID,
ConjunctionID〉. The first two entries show the attribute-value pair. The
Conjunction ID, which comes from the filter, identifies the conjunction that
is satisfied by the attribute-value pair. Since we use a DNF representation, a
conjunction contains one or more predicates.

(2) Counts of relevant records having the value in this entry.
(3) Count of non-relevant records having the value in this entry.
(4) Proximity to other values (of same attribute) of relevant records.
(5) Proximity to other values (of same attribute) of non-relevant records.

For every distinct value vi in the scores table, we compute its weighted prox-
imity to other relevant values of the same attribute in the scores table using the
following formula:

vi.RelevantCount +
∑k−1

j=1 (vj .RelevantCount ∗ sim(vi, vj))

where vi.RelevantCount is the count of relevant records (second column in the
scores table), k is the total number of distinct values of the attribute corre-
sponding to vi that also have the same conjID, and sim(vi, vj) is the similarity
between vi and vj as computed by the similarity function corresponding to the
attribute. In the same fashion, we compute proximity to non-relevant values
using the above formula with vi.nonRelevantCount and vj .nonRelevantCount
values. The intuition behind the proximity values is to bolster the exact counts
of every distinct attribute-value pair in the scores table with the counts of other
values of the same attribute weighted by their similarity to the attribute value at
hand. This in essence allows us to capture the query region which the user is giv-
ing an example of. Table 2 shows an example scores table with one conjunction
(C1) of one predicate on the attribute location.

Table 2. Example scores table

OBJ ID Rel Irrel AggRel AggIrrel
Count Count Count Count

< Location, 1 1 1+2*0.8 1 + 1 ∗ 0.8
Irvine, C1 > =2.6 +2 ∗ 0.2 = 2.2
< Location, 2 1 2+1*0.8 1+1*0.8
LA, C1 > =2.8 +2*0.2=2.2
< Location, 0 2 0+1*0.2 2+1*0.2
SD, C1 > +2*0.2=0.6 +1*0.2=2.4
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Refinement Algorithms. In principle, the feedback given by the analyst can
potentially result in one of three types of filter refinement. A filter that is too
specific can be made more general (called filter expansion), a filter that is too
general can be made more specific (called filter contraction) and finally the target
values of predicates can be shifted to a new value (called filter movement).

The refinement algorithm in figure 2 performs all three kinds of refinements
and adjusts weights. The algorithm starts by pruning insignificant predicates
(entries) from scores table using the pruneInsigEntires function. Due to limited
space, we skip the detailed discussion of this function. In short, it uses statistical
method to measure the performance of each candidate predicate, and deletes the
useless ones. The output of this function is a subset of the scores table, STpruned,
whose entries are used as candidates to refine the filter.

Using the pruned scores table, STpruned, the algorithm next tries to determine
whether the filter should be updated (line 3 to line 13). For each predicate in
each conjunction, the algorithm first extracts the relevant entries, STPj . This
is performed by matching the conjunctionID and attribute name in the filter
with STpruned entries. This matching may result in many candidate predicates.
Hence, we need a mechanism to select those that represent the right values to
which we should move the filter. We do this selection by first clustering the
candidate predicates and then choosing the cluster centroid as a representation
of the new target value of Pj . For this, we use hierarchical agglomerative clus-
tering (HAC) [2] method where the distance measure is computed based on the
similarity between predicates in STPj.

Once we get a set of candidate target points using HAC clustering, the al-
gorithm tests whether each candidate is actually a new target value (line 7).
The isNewPoint function determines the closeness of each candidate to each of
the existing filter predicate. If a candidate is not near any of the existing target
points, we add it as a new target value of the current predicate (line 8).

Next, the algorithm updates the weights of the predicates and conjunctions
in the query. The predicate weight is computed as the average confidence level

ComputeNewQuery()
Input: Filter (Q), Scores table(ST )
NumCase, NumRelCase, HACT hresh
Output: NewFilter
1. STpruned = pruneInsigEntries (NumCase, NumRelCase)
2. Foreach Conjunction (Ci) in Query
3. Foreach Predicate (Pj ) in Ci
4. STPj = filterScoreTable (STpruned, Pj.attribute, Ci)
5. ClustersP j = computeHACCluster (STPj , HACT hresh)
6. Foreach Cluster (Clk) in ClustersP j
7. if Pj .isNewPoint(Clk.centroid, Pj)
8. Pj .addQueryPoint (Clk.centroid)
9. endif
10. endFor
11. Pj.weight = averageConf(Pj .queryP oints)
12. endFor

13. Ci.weight =

∑ |Ci|
j=1 Pj .weight

|Ci|
14. NewFilter.addConjunction(Ci )
15. NewFilter.normalizeWeight()
16. endFor

Fig. 2. ComputeNewFilter Algorithm
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of the query points in the updated predicate. The confidence value of a pred-
icate is computed based on its proximity values stored in the scores table as:

ProximityToRelevant
ProximityToRelevant+ProximityToIrrelevant . The weight for a conjunction is com-
puted as the average of the weights of its constituent predicates.

Refining The Scoring Model. The primary task of FREESIA’s ranking com-
ponent is to assign an accurate ranking score to each record. This component
uses the maximum of the scores from the Filtering Component and the score
from the short-term scoring model to be a record’s final ranking score. When
the analyst provides samples to form the scoring rules, many general incremen-
tal learning methods can be applied. In FREESIA, we use a pool based active
learning method [11] which is suited to streaming data and is able to capture
sample based short-term user model. It is a three-step procedure:

• Train a Naive Bayes classifier – short-term model – using sampled feedback records.
• Apply the short-term model to score the records returned by the Filter Component.
• Merge the scores from long-term model (i.e., filter score) and from short-term model.

4 Experiments

In this section, we present the results of the experiments we conducted to eval-
uate the effectiveness of our refinement method.

Table 3. Dataset Descriptions and Parameters

Dataset # Cases # Cls. # cont # disc Page Data
attrs attrs size Group size

adult 32,561 2 6 8 40 1,000
covertype 10,000 7 10 40 40 1,000
hypo 3,163 2 7 18 20 316
waveform21 5,000 2 21 0 20 500

We used four real-life datasets from the UCI machine learning repository [8].
The datasets are a good ensemble to some intelligence data. They are reasonable
in size and have predefined target (classes); they also cover some portions of US
census data (adult), environmental data (covertype), disease data (hypo) and
scientific analysis data (waveform21). Table 3 shows the characteristics of the
datasets. There are two types of attributes in the datasets (viz. continuous and
discrete). We manually generate 20 initial and target query pairs for each dataset.

Our evaluation process closely follows the FREESIA architecture(Section 3.1).
Table 3 shows two of the parameters we used for each dataset, namely page size
and data group size. Page size specifies the number of records in each page.
Data group size shows the number of records streaming into the system at each
iteration. In addition, we set two more parameters, namely precision threshold
and record-level feedback page threshold. Precision threshold shows that if the
precision in a page is higher than this number, the page will be treated as a
highly relevant page. We use 80% for all data sets. For all data sets, record-level
feedback is gathered for 2 page.
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The initial query is executed in the first iteration. The system then presents
the data in pages. If a page is a highly relevant page, the system continues
fetching the next page, and no feedback will be given to the system. This is to
simulate the page-level feedback. If a page is not a highly relevant page, then in
reality record-level feedback will be given on this page. Since we are using a pre-
labeled dataset, we simulate this feedback process by assigning the respective
true label of each record in the page. If the number of record-level feedback pages
is beyond the page limit of record-level feedback specified above, the system will
dump the remaining pages to the data archive (i.e. they are unseen pages).

Tested Strategies. Four approaches were compared in our experiments:

(1) Baseline method (Q). This uses only the initial query.
(2) Query and Scoring Model Refinement (QM+). This refines the scoring model,

but the similarity query is not refined. This, in effect, simply makes the query
more specific.

(3) Query Refinement (Q+). This refines the similarity query only. This performs
all three types of refinement.

(4) Query Refinement and Scoring Model Refinement (Q+M+). This refines both
the query and the scoring models. This also refines all three types of refine-
ment but is capable of producing much more focused queries.

4.1 Results

Figures 3 to 6 show the precision and recall measures across different refinement
iterations. In the first two datasets (adult and hypo), we show results where the
desired refinement of the initial queries is achieved in the first few iterations
(around two or three iterations). Moreover, the system was able to maintain
the high precision and recall measures across the subsequent iterations. As can
be clearly seen in these two figures, the two algorithms that perform similarity
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query refinement (i.e. Q+ and Q + M+) have much better performance com-
pared to the other two which do not perform query refinement. For the dataset
(waveform21), to achieve the desired refinements, more refinement iterations
are required compared to the above two datasets (see the recall graph). Here as
well Q+M+ and QM+ achieved the best precision and recall. The last dataset
(covertype) shows cases where the initial query is very different from the de-
sired target. As shown in the graph, precision declines as more iterations are
needed (i.e. relatively more non-relevant records are retrieved). Still, Q + M+
performs better than the rest. The above results clearly show the effectiveness
of FREESIA’s refinement algorithms.

5 Related Work

The filtering process studied in this paper is related to target data selection
techniques proposed in data mining on static data warehouses. However, unlike
data mining on data warehouses (where a relevant subset of the database is fil-
tered out for data mining tasks by carrying out as much refinement on the filters
as required), in streaming data filtering has to be done continuously to allow
data mining to occur as soon as the data arrives. There has been some research
to address the problem of target subset selection from static data using classi-
fiers [7, 9]. This body of research, however, only dealt with the problem of auto-
matic classifier generation and the data considered were static. Recently, [3, 6]
have considered the problem of data mining on streaming data. These works
considered dynamic construction and maintenance of general models in a pre-
cise data environment. Whereas, our work deals with user predefined imprecise
selection filters, and exploits the user knowledge to improve the accuracy of the
filtering process.

6 Conclusions

In this paper, we have proposed a novel filtering framework called FREESIA,
which enables analysts to apply the classifiers directly on database systems (in
the form of similarity queries) to filter data instances that belong to a desired
target class on a continuous basis. We believe our system can be used in many
intelligence related tasks.
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